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Abstract—In the supplementary material, we first revisit the
preliminaries of state space models (SSMs), introduce related
vision Mamba methods, summarize the meaning of notations in
section IV of our main text, and then provide more experimental
results and implementation details to complement the main
manuscript, including experimental results as follows: 1) visual
results using our BlueDepth dataset versus other datasets, 2)
visual comparison of real underwater images from Test-FR5691,
and 3) visual comparison of different methods on underwater
panoramic, hazy, sand-dust, and low-light images.

I. PRELIMINARIES

State Space Models (SSMs) are proposed for sequence-to-
sequence modeling, which maps a 1-dimensional sequence
input x(t) ∈ R1×1 to an output y(t) ∈ R1×1 by a latent state
h(t) ∈ RN×1, as described by the following linear ordinary
differential equations:

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t),
(1)

where t and N are the time step and hidden state size,
respectively. h′(t) = d

dth(t). A ∈ RN×N , B ∈ RN×1,
and C ∈ R1×N denote state, input, and output matrices,
respectively. A determines the influence of previous latent
state on current latent state, B decides how much x(t) affects
the latent state, and C describes how the latent state is
transformed into y(t). To integrate Eq. (1) into deep learning-
based architectures, the Zero-Order Hold (ZOH) rule is usually
adopted for discretization, since the ZOH can avoid large
computational burden caused by calculating integrals. The
discretization is defined as follows:

Ā = e∆A,

B̄ = (∆A)−1(e∆A − I) ·∆B,

ht = Āht−1 + B̄xt,

yt = Cht,

(2)

where Ā and B̄ are discrete counterparts. ∆ and I are the
time-scale parameter and the identity matrix, respectively.

Since the parameters (∆, A, B, and C) are randomly
initialized and remain invariant to the input x, the SSM
faces the poor performance in context-dependent learning. To
solve the above issue, Dao et al. [1] introduce a selective
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TABLE I
DEFINITION OF NOTATIONS IN SECTION IV OF OUR MAIN TEXT.

Symbol Definition Symbol Definition
h Latent state H Matrixized H
A State matrix Ā Discretized A
B Input matrix B̄ Discretized B
C Output matrix ∆ Time-scale parameter
S Parent node matrix C Child node matrix
ρ(·) Spectral radius ∥ · ∥∞ Infinity norm

mechanism-based SSM named Mamba. Specifically, the se-
lection mechanism is used to make parameters (∆, B, and C)
depending on the input x:

∆, B,C = Linear(x), (3)

where Linear is a parameterized projection. Such an initial-
ization can effectively improve the performance of the SSM
in context-dependent learning.

II. VISION MAMBA METHODS

Leveraging Mamba’s strengths in long-sequence modeling,
many Mamba-based models have been proposed for vision
tasks. These models flatten 2D images into multiple 1D se-
quences along different scanning directions, followed by state
propagation. Zhu et al. [2] proposed the first visual Mamba
(ViM) model, which introduces a bidirectional raster scanning
strategy to convert 2D images into 1D sequences and learns the
visual representation in a sequence modeling manner. Hu et al.
[3] designed a continuous scanning strategy to preserve spatial
dependencies of images and achieve enhanced global context
modeling. Shi et al. [4] combined four-directional raster
scanning with a diagonal scanning strategy to preserve image
locality and continuity, but incurred additional computational
burden. Li et al. [5] introduced a nested S-shape scanning strat-
egy, which divided an image into multiple non-overlapping
subregions and performed continuous scanning within each
subregion, thus improving local feature modeling capability.
Although the above Mamba-based methods achieve promising
performance in the image domain, they perform inadequately
in underwater monocular depth estimation (UMDE) because
their fixed and inflexible scanning strategies fail to effectively
model the structural features of underwater images. In contrast,
our proposed tree-aware scanning strategy constructs an input-
dependent minimum spanning tree and leverages the structural
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relationships between parent and child nodes to capture the
spatial topology of underwater images, thereby enabling multi-
scale feature modeling capabilities. Our scanning strategy not
only delivers powerful feature representation capabilities but
also maintains a high degree of flexibility.

III. MORE EXPERIMENTAL RESULTS

A. Experiment Settings

Implementation Details. We implement the proposed Tree-
Mamba on the PyTorch 2.1.0 framework with an Intel (R)
i9-12900K CPU, 64GB RAM, and an NVIDIA RTX 4090
GPU. We adopt the ADAM optimizer for network optimization
and set the initial learning rate to 10−4. The input underwater
images are resized to 256×256. The batch size and training
epochs are set to 8 and 50. The hyperparameters, including
the learning rate, are adaptively optimized using the Optuna
library [6] by minimizing the loss of the training set.

B. Effects of different UMDE datasets

We investigate the effectiveness of different UMDE datasets
in boosting the prediction performance of existing UMDE
models. Specifically, four UMDE models (UW-GAN [7],
UDepth [8], UW-Depth [9], and our Tree-Mamba) are indi-
vidually trained on the eight datasets (Sea-Thru [10], NYU-
U [11], SQUID [12], FLSea [13], Atlantis [14], SUIM-SDA
[15], USOD10K [16], and our BlueDepth). After training for
50 epochs, each UW-GAN [7], UDepth [8], UW-Depth [9],
and our Tree-Mamba with the minimum training loss value is
retained. Subsequently, a qualitative evaluation is performed
on the UIEB dataset [17] to contrast the performance of
these trained UMDE models, as shown in Fig. 1. As shown,
all models trained on real-labeled datasets (Sea-Thru [10],
NYU-U [11], SQUID [12], and FLSea [13]) tend to pro-
duce chaotic scene depth distributions, while those trained on
pseudo-labeled datasets (Atlantis [14], SUIM-SDA [15], and
USOD10K [16]) improve estimation accuracy of scene depth,
but their improvements remain limited. In contrast, all models
trained with our proposed BlueDepth are able to produce more
accurate scene depth, and our proposed Tree-Mamba method
yields better depth results than other competitors [7]–[9]. This
significant improvement highlights the effectiveness of the
proposed BlueDepth baseline for facilitating existing UMDE
models to better learn accurate object-depth relationships.

REFERENCES

[1] T. Dao and A. Gu, “Transformers are SSMs: generalized models and
efficient algorithms through structured state space duality,” in Proc. Int.
Conf. Mach. Learn. (ICML), pp. 10041–10071, 2024.

[2] L. Zhu, B. Liao, Q. Zhang, X. Wang, W. Liu, and X. Wang, “Vision
mamba: efficient visual representation learning with bidirectional state
space model,” in Proc. Int. Conf. Mach. Learn. (ICML), 2024.

[3] V. T. Hu, S. A. Baumann, M. Gui, O. Grebenkova, P. Ma, J. Fischer,
and B. Ommer, “ZigMa: A dit-style zigzag mamba diffusion model,” in
Proc. Eur. Conf. Comput. Vis. (ECCV), pp. 148–166, 2024.

[4] Y. Shi, B. Xia, X. Jin, X. Wang, T. Zhao, X. Xia, X. Xiao, and W. Yang,
“VmambaIR: Visual state space model for image restoration,” IEEE
Trans. Circuits Syst. Video Technol., vol. 35, no. 6, pp. 5560–5574, 2025.

[5] B. Li, H. Zhao, W. Wang, P. Hu, Y. Gou, and X. Peng, “MaIR: A locality-
and continuity-preserving mamba for image restoration,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 7491–7501, 2025.

[6] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A
next-generation hyperparameter optimization framework,” in Proc. 25th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pp. 2623–
2631, 2019.

[7] P. Hambarde, S. Murala, and A. Dhall, “UW-GAN: Single-image depth
estimation and image enhancement for underwater images,” IEEE Trans.
Instrum. Meas., vol. 70, pp. 1–12, 2021.

[8] B. Yu, J. Wu, and M. J. Islam, “UDepth: Fast monocular depth
estimation for visually-guided underwater robots,” in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), pp. 3116–3123, 2023.

[9] L. Ebner, G. Billings, and S. Williams, “Metrically scaled monocular
depth estimation through sparse priors for underwater robots,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), pp. 3751–3757, 2024.

[10] D. Akkaynak and T. Treibitz, “Sea-Thru: A method for removing water
from underwater images,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), pp. 1682–1691, 2019.

[11] C. Li, S. Anwar, and F. Porikli, “Underwater scene prior inspired deep
underwater image and video enhancement,” Pattern Recognit., vol. 98,
p. 107038, 2020.

[12] D. Berman, D. Levy, S. Avidan, and T. Treibitz, “Underwater single
image color restoration using haze-lines and a new quantitative dataset,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 8, pp. 2822–2837,
2021.

[13] Y. Randall, “Flsea: Underwater visual-inertial and stereo-vision forward-
looking datasets,” Master’s thesis, University of Haifa (Israel), 2023.

[14] F. Zhang, S. You, Y. Li, and Y. Fu, “Atlantis: Enabling underwater
depth estimation with stable diffusion,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), pp. 11852–11861, 2024.

[15] K. Li, X. Wang, W. Liu, Q. Qi, G. Hou, Z. Zhang, and K. Sun, “Learning
scribbles for dense depth: Weakly supervised single underwater image
depth estimation boosted by multitask learning,” IEEE Trans. Geosci.
Remote Sens., vol. 62, pp. 1–15, 2024.

[16] L. Hong, X. Wang, G. Zhang, and M. Zhao, “USOD10K: A new
benchmark dataset for underwater salient object detection,” IEEE Trans.
Image Process., vol. 34, pp. 1602–1615, 2025.

[17] C. Li, C. Guo, W. Ren, R. Cong, J. Hou, S. Kwong, and D. Tao, “An
underwater image enhancement benchmark dataset and beyond,” IEEE
Trans. Image Process., vol. 29, pp. 4376–4389, 2020.

[18] Y.-T. Peng and P. C. Cosman, “Underwater image restoration based on
image blurriness and light absorption,” IEEE Trans. Image Process.,
vol. 26, no. 4, pp. 1579–1594, 2017.

[19] Y.-T. Peng, K. Cao, and P. C. Cosman, “Generalization of the dark
channel prior for single image restoration,” IEEE Trans. Image Process.,
vol. 27, no. 6, pp. 2856–2868, 2018.

[20] H. Gupta and K. Mitra, “Unsupervised single image underwater depth
estimation,” in Proc. IEEE Int. Conf. Image Process. (ICIP), pp. 624–
628, 2019.

[21] W. Song, Y. Wang, D. Huang, A. Liotta, and C. Perra, “Enhancement
of underwater images with statistical model of background light and
optimization of transmission map,” IEEE Trans. Broadcast., vol. 66,
no. 1, pp. 153–169, 2020.

[22] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun, “Towards
robust monocular depth estimation: Mixing datasets for zero-shot cross-
dataset transfer,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 3,
pp. 1623–1637, 2022.

[23] N. Zhang, F. Nex, G. Vosselman, and N. Kerle, “Lite-Mono: A
lightweight cnn and transformer architecture for self-supervised monoc-
ular depth estimation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), pp. 18537–18546, 2023.

[24] J. Zhou, Q. Liu, Q. Jiang, W. Ren, K.-M. Lam, and W. Zhang,
“Underwater camera: Improving visual perception via adaptive dark
pixel prior and color correction,” Int. J. Comput. Vis., pp. 1–19, 2023.

[25] Y. Ding, K. Li, H. Mei, S. Liu, and G. Hou, “WaterMono: Teacher-
guided anomaly masking and enhancement boosting for robust under-
water self-supervised monocular depth estimation,” IEEE Trans. Instrum.
Meas., vol. 74, pp. 1–14, 2025.

[26] N. J. Avanaki, A. Ghildyal, N. Barman, and S. Zadtootaghaj, “LAR-
IQA: A lightweight, accurate, and robust no-reference image quality
assessment model,” in Proc. Eur. Conf. Comput. Vis. (ECCV), pp. 328–
345, 2024.



3

Fig. 1. Visual results using our proposed BlueDepth dataset versus other datasets. ST, NY, SQ, FL, AT, SU, US, and BD denote the model trained on
Sea-Thru [10], NYU-U [11], SQUID [12], FLSea [13], Atlantis [14], SUIM-SDA [15], USOD10K [16], and our BlueDepth, respectively. The depth results of
UW-GAN [7], UDepth [8], UW-Depth [9], and Tree-Mamba are significantly improved by training on our BlueDepth dataset, meanwhile, our Tree-Mamba
method yields better depth results than other competitors.
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(a) Input (b) IBLA [18] (c) GDCP [19] (d) UW-Net [20] (e) NUDCP [21] (f) UW-GAN [7] (g) HazeLine [12] (h) MiDas [22]

(i) Lite-Mono [23] (j) UDepth [8] (k) ADPCC [24] (l) UW-Depth [9] (m) WsUID-Net [15] (n) WaterMono [25] (o) Tree-Mamba (p) Reference

Fig. 2. Visual comparison of different methods on yellowish and low-visibility underwater images from Test-FR5691. Compared with other competitors, our
Tree-Mamba method yields better depth results on different degraded underwater images, and our depths are closer to those of ground truths.

(a) Input (b) IBLA [18] (c) GDCP [19] (d) UW-Net [20] (e) NUDCP [21] (f) UW-GAN [7] (g) HazeLine [12] (h) MiDas [22]

(i) Lite-Mono [23] (j) UDepth [8] (k) ADPCC [24] (l) UW-Depth [9] (m) WsUID-Net [15] (n) WaterMono [25] (o) Tree-Mamba (p) Reference

Fig. 3. Visual comparison of different methods on bluish and greenish underwater images from Test-FR5691. Compared with other competitors, our Tree-
Mamba method yields better depth results on different degraded underwater images, and our depths are closer to those of ground truths.

(a) Input (b) IBLA [18] (c) GDCP [19] (d) UW-Net [20] (e) NUDCP [21] (f) UW-GAN [7] (g) HazeLine [12] (h) MiDas [22]

(i) Lite-Mono [23] (j) UDepth [8] (k) ADPCC [24] (l) UW-Depth [9] (m) WsUID-Net [15] (n) WaterMono [25] (o) Tree-Mamba (p) Reference

Fig. 4. Visual comparison of different methods on yellowish and low-visibility underwater images from Test-FR5691. Compared with other competitors, our
Tree-Mamba method yields better depth results on different degraded underwater images, and our depths are closer to those of ground truths.
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(a) Input | Quality score (↑) (b) IBLA [18] | 45.72 (c) GDCP [19] | 48.26

(d) UW-Net [20] | 50.56 (e) NUDCP [21] | 46.70 (f) UW-GAN [7] | 89.87

(g) HazeLine [12] | 41.88 (h) MiDas [22] | 68.00 (i) Lite-Mono [23] | 54.26

(j) UDepth [8] | 85.13 (k) ADPCC [24] | 73.12 (l) UW-Depth [9] | 88.18

(m) WsUID-Net [15] | 50.55 (n) WaterMono [25] | 32.69 (o) Tree-Mamba | 96.52

Fig. 5. Visual comparison of different methods on an underwater panoramic image. The quality score is evaluated by the fine-tuned LAR-IQA model [26].
The best result is marked in red. Compared with other competitors, our Tree-Mamba method yields better results of both panoramic depth and quality score.

(a) Input | Quality score (↑) (b) IBLA [18] | 50.34 (c) GDCP [19] | 48.80

(d) UW-Net [20] | 56.07 (e) NUDCP [21] | 49.90 (f) UW-GAN [7] | 80.46

(g) HazeLine [12] | 37.00 (h) MiDas [22] | 75.08 (i) Lite-Mono [23] | 64.08

(j) UDepth [8] | 80.05 (k) ADPCC [24] | 68.86 (l) UW-Depth [9] | 86.15

(m) WsUID-Net [15] | 58.66 (n) WaterMono [25] | 52.34 (o) Tree-Mamba | 98.75

Fig. 6. Visual comparison of different methods on an underwater panoramic image. The quality score is evaluated by the fine-tuned LAR-IQA model [26].
The best result is marked in red. Compared with other competitors, our Tree-Mamba method yields better results of both panoramic depth and quality score.
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(a) Input

(b) IBLA [18] (c) GDCP [19] (d) UW-Net [20] (e) NUDCP [21] (f) UW-GAN [7] (g) HazeLine [12] (h) MiDas [22]

(i) Lite-Mono [23] (j) UDepth [8] (k) ADPCC [24] (l) UW-Depth [9] (m) WsUID-Net [15] (n) WaterMono [25] (o) Tree-Mamba

Fig. 7. Visual comparison of different methods on hazy (top), sand-dust (middle), and low-light (bottom) images. Compared with other methods, our Tree-
Mamba method yields better depth estimation results on hazy, sand-dust, and low-light images.

(a) Input

(b) IBLA [18] (c) GDCP [19] (d) UW-Net [20] (e) NUDCP [21] (f) UW-GAN [7] (g) HazeLine [12] (h) MiDas [22]

(i) Lite-Mono [23] (j) UDepth [8] (k) ADPCC [24] (l) UW-Depth [9] (m) WsUID-Net [15] (n) WaterMono [25] (o) Tree-Mamba

Fig. 8. Visual comparison of different methods on hazy (top), sand-dust (middle), and low-light (bottom) images. Compared with other methods, our Tree-
Mamba method yields better depth estimation results on hazy, sand-dust, and low-light images.
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